Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Neurosci ; 72(1): 97-112, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34478049

RESUMO

The activation of microglia is an important cause of central nervous system (CNS) inflammatory cell infiltration and inflammatory demyelination in experimental autoimmune encephalomyelitis (EAE). Furthermore, the proinflammatory response induced by the NLR family pyrin domain containing 3 (NLRP3) inflammasome can be amplified in microglia after NLRP3 inflammasome activation. Autophagy is closely related to the inflammatory response. Caffeine exerts anti-inflammatory and autophagy-stimulating effects, but the specific mechanism remains unclear. This study examined the mechanism underlying the anti-inflammatory effect of caffeine on EAE. In this study, C57BL/6 mice were immunized to induce EAE and treated with caffeine to observe its effect on prognosis. The effects of caffeine on autophagy and inflammation were also analysed in mouse primary microglia (PM) and the BV2 cell line. The data demonstrated that caffeine reduced the clinical score, the infiltration of inflammatory cells, the demyelination level, and the activation of microglia in EAE mice. Furthermore, caffeine increased the LC3-II/LC3-I levels and decreased the NLRP3 and P62 levels in EAE mice, whereas the autophagy inhibitor 3-methylamine (3-MA) blocked these effects. In vitro, caffeine promoted autophagy by suppressing the mechanistic target of rapamycin (mTOR) pathway and inhibited activation of the NLRP3 inflammasome. However, autophagy-related gene 5 (ATG5)-specific siRNA abolished the anti-inflammatory effect of caffeine treatment in PM and BV2 cells. Taken together, these data suggest that caffeine exerts a newly discovered effect on EAE by reducing NLRP3 inflammasome activation via the induction of autophagy in microglia.


Assuntos
Encefalomielite Autoimune Experimental , Inflamassomos , Animais , Autofagia , Cafeína/farmacologia , Cafeína/uso terapêutico , Encefalomielite Autoimune Experimental/metabolismo , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias
2.
Cell Death Dis ; 11(7): 545, 2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32683410

RESUMO

Skeletal muscle atrophy is one of the clinical symptoms of myotonic dystrophy type 1 (DM1). A decline in skeletal muscle regeneration is an important contributor to muscle atrophy. Skeletal muscle satellite cells (SSCs) drive skeletal muscle regeneration. Increased autophagy can reduce the proliferative capacity of SSCs, which plays an important role in the early regeneration of damaged skeletal muscle in DM1. Discovering new ways to restore SSC proliferation may aid in the identification of new therapeutic targets for the treatment of skeletal muscle atrophy in DM1. In the pathogenesis of DM1, muscleblind-like 1 (MBNL1) protein is generally considered to form nuclear RNA foci and disturb the RNA-splicing function. However, the role of MBNL1 in SSC proliferation in DM1 has not been reported. In this study, we obtained SSCs differentiated from normal DM1-04-induced pluripotent stem cells (iPSCs), DM1-03 iPSCs, and DM1-13-3 iPSCs edited by transcription activator-like (TAL) effector nucleases (TALENs) targeting CTG repeats, and primary SSCs to study the pathogenesis of DM1. DM1 SSC lines and primary SSCs showed decreased MBNL1 expression and elevated autophagy levels. However, DM1 SSCs edited by TALENs showed increased cytoplasmic distribution of MBNL1, reduced levels of autophagy, increased levels of phosphorylated mammalian target of rapamycin (mTOR), and improved proliferation rates. In addition, we confirmed that after MBNL1 overexpression, the proliferative capability of DM1 SSCs and the level of phosphorylated mTOR were enhanced, while the autophagy levels were decreased. Our data also demonstrated that the proliferative capability of DM1 SSCs was enhanced after autophagy was inhibited by overexpressing mTOR. Finally, treatment with rapamycin (an mTOR inhibitor) was shown to abolish the increased proliferation capability of DM1 SSCs due to MBNL1 overexpression. Taken together, these data suggest that MBNL1 reverses the proliferation defect of SSCs in DM1 by inhibiting autophagy via the mTOR pathway.


Assuntos
Autofagia/efeitos dos fármacos , Distrofia Miotônica/patologia , Proteínas de Ligação a RNA/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Genoma , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Sirolimo/farmacologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
3.
Front Neurol ; 10: 808, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447754

RESUMO

Background: Cerebral small vessel disease (SVD) is generally considered as a cause of stroke, disability, gait disturbances, vascular cognitive impairment, and dementia. The aim of this study was to investigate whether the total SVD burden can be used to predict functional outcome in patients with acute ischemic stroke. Methods: From April 2017 to January 2018, consecutive patients with acute ischemic stroke who underwent baseline MRI scan were evaluated. The functional outcome was assessed using the modified Rankin Scale (mRS) at 90 days and defined as i) excellent outcome (mRS ≤ 1) and ii) good outcome (mRS ≤ 2). Brain MRI was performed and assessed for lacunes, white matter hyperintensities (WMH), and enlarged perivascular spaces (EPVS). The total SVD burden was calculated based on lacunes, WMH, and EPVS and then summed up to generate an ordinal "total SVD burden" (range 0-3). Bivariate logistic regression models were used to identify the association between SVD and functional outcome. Results: A total of 416 patients were included in the final analysis; 44.0, 33.4, 19.2, and 3.4% of the patients had 0, 1, 2, and 3 features of SVD, respectively. In regard to individual SVD feature, lacunes (OR: 0.48, 95% CI: 0.32-0.71; OR: 0.49, 95% CI: 0.31-0.77) and WMH (OR: 0.53, 95% CI: 0.34-0.82; OR: 0.53, 95% CI: 0.33-0.85) were negatively associated with excellent outcome and good outcome. As to the total burden of SVD, three SVD features had strongest negative associations with functional outcomes (excellent outcome, OR: 0.13, 95% CI: 0.03-0.48; good outcome, OR: 0.18, 95% CI: 0.06-0.54). After adjustment for potential confounders, a high SVD burden (3 features, OR: 0.07, 95% CI: 0.01-0.41) and the score of total SVD burden (OR: 0.64, 95% CI: 0.44-0.93) remained negatively associated with excellent outcome. Conclusion: Total SVD burden negatively associated with functional outcome at 3 months in patients with acute ischemic stroke and is superior to individual SVD feature in prediction of functional outcome. MRI-based assessment of total SVD burden is highly valuable in clinical management of stroke victims and could help guide the allocation of resources to improve outcome.

4.
Enzyme Microb Technol ; 95: 236-241, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27866621

RESUMO

Dissimilatory metal reducing bacteria (DMRB) widely exist in the subsurface environment and are involved in various contaminant degradation and element geochemical cycling processes. Recent studies suggest that DMRB can biosynthesize metal nanoparticles during metal reduction, but it is unclear yet how such biogenic nanomaterials would affect their decontamination behaviors. In this study, we found that the dechlorination rates of carbon tetrachloride (CT) by Shewanella putrefaciens CN32 was significantly increased by 8 times with the formation of biogenic ferrous sulfide (FeS) nanoparticles. The pasteurized biogenic FeS enabled 5 times faster dechlorination than abiotic FeS that had larger sizes and irregular structure, confirming a significant contribution of the biogenic FeS to CT bioreduction resulting from its good dispersion and relatively high dechlorination activity. This study highlights a potentially important role of biosynthesized nanoparticles in environmental bioremediation.


Assuntos
Tetracloreto de Carbono/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Nanopartículas Metálicas/química , Shewanella putrefaciens/metabolismo , Biodegradação Ambiental , Biotecnologia , Química Verde , Cinética , Nanopartículas Metálicas/ultraestrutura , Nanotecnologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...